20 research outputs found

    Improving Transfer Learning with a Dual Image and Video Transformer for Multi-label Movie Trailer Genre Classification

    Full text link
    In this paper, we study the transferability of ImageNet spatial and Kinetics spatio-temporal representations to multi-label Movie Trailer Genre Classification (MTGC). In particular, we present an extensive evaluation of the transferability of ConvNet and Transformer models pretrained on ImageNet and Kinetics to Trailers12k, a new manually-curated movie trailer dataset composed of 12,000 videos labeled with 10 different genres and associated metadata. We analyze different aspects that can influence transferability, such as frame rate, input video extension, and spatio-temporal modeling. In order to reduce the spatio-temporal structure gap between ImageNet/Kinetics and Trailers12k, we propose Dual Image and Video Transformer Architecture (DIViTA), which performs shot detection so as to segment the trailer into highly correlated clips, providing a more cohesive input for pretrained backbones and improving transferability (a 1.83% increase for ImageNet and 3.75% for Kinetics). Our results demonstrate that representations learned on either ImageNet or Kinetics are comparatively transferable to Trailers12k. Moreover, both datasets provide complementary information that can be combined to improve classification performance (a 2.91% gain compared to the top single pretraining). Interestingly, using lightweight ConvNets as pretrained backbones resulted in only a 3.46% drop in classification performance compared with the top Transformer while requiring only 11.82% of its parameters and 0.81% of its FLOPS
    corecore